Lecture 5 - "How I came to love the Dot Product"

1) Tools for the talk

\[(4,4) \begin{pmatrix} 2 \\ \frac{1}{8} \end{pmatrix} \begin{pmatrix} 0.24 \\ 0.96 \end{pmatrix} (0.71,0.71) \begin{pmatrix} 0.24 \\ 0.97 \end{pmatrix} \]

\[32^{1/2} = 5.66 \quad 68^{1/2} = 8.25 \]

2) Bra C Ket Notation \[\langle b|C|k \rangle \]
 a) \[\langle b| = a \] \(|1 \times n\) row vector \[b\rangle \[|k\rangle = a \] \(|n \times 1\) column vector

3) Scalar Product
 a) Operator symbol, operation, characterization
 i) shorthand notations ii) multiplication produces scalar iii) commutative
 b) Possible Dot Products
 i) with a single vector "self" dot product ii) with a different vector
 c) "Self" dot product
 i) "wird" vectors - vectors that are not normalized
 ii) "normalized vectors (vectors with a length of "unity")
 iii) how do you get normalized vectors?
 1) they come that way at "birth"
 2) they are sent through "normalization therapy"
 d) Vector "doted" with another vector
 \[\cos \phi = \frac{\langle r|c \rangle}{\sqrt{\langle r|r \rangle \langle c|c \rangle}} \]
 e) Matrix elements (scalar products of vector sets [2 at a time]) \[\langle r|, \langle s|, \text{and} \langle t| \]
 \[\langle r|\rangle \quad \langle r|s \rangle \quad \langle r|t \rangle \]
 \[\langle s|r \rangle \quad \langle s|s \rangle \quad \langle s|t \rangle \]
 \[\langle t|r \rangle \quad \langle t|s \rangle \quad \langle t|t \rangle \]
 f) Graphic image of dot product
 i) projection vectors ii) directional cosines

4) Vector Product
 a) Operator symbol, operation, characterization
 i) \[\langle b|x|k \rangle \]
 ii) multiplication produces vector iii) anti-commutative
 b) cross product vector-“parents” angle \[\sin \phi = \frac{\langle d|d \rangle^{1/2}}{\langle b|b \rangle^{1/2} \langle c|c \rangle^{1/2}} \]
 c) Length of cross product vector \[\langle d| \]
 \[\langle d|d \rangle^{1/2} = \langle b|b \rangle^{1/2} \langle c|c \rangle^{1/2} \sin \phi \]
 d) \[\langle d| \]
 \[\langle d|d \rangle^{2} = \langle b|b \rangle \langle k|k \rangle - \langle k|k \rangle^{2} \]
 e) Components of \[\langle d| \] when \[\langle b| \text{and} |k\rangle \]
 are row and column vectors
 \[\langle d| = (b_{2i} + b_{2j} + b_{2k}) \times (k_{1i} + k_{2j} + k_{3k}) \]
 or
 \[\langle d| = b_{1} i + b_{2} j + b_{3} k \]
 \[k_{1} k_{2} k_{3} \]

5) Triple Product
 a) Triple scalar product
 i) \[\langle \langle b|x|c \rangle|e \rangle \]
 represents a volume ii) \[D^2WR \]
 \[\langle b|c|x|e \rangle \]
 doesn’t exist (you can cross the dot but not dot the cross)
 b) Triple vector product
 i) \[\langle a|x|b\rangle \]
 \[\text{or} \]
 \[\text{AxBxC ("I'm back in the plane again")} \]
 ii) BAC-CAB rule \[\langle b|a\rangle|c \rangle - \langle c|a\rangle|b \rangle \]
 = triple vector product answer