A point dipole with a dipole moment of \(\vec{\mu} \) is at the center of your reference space. The electrostatic potential is a scalar point function and in this situation equals;

\[\psi(r) = \frac{1}{4\pi} \left(\frac{1}{\varepsilon_0} \right) \left(\frac{\langle r \cdot \vec{\mu} \rangle}{r^3} \right) \]

where \(\vec{\mu} \) and \(\varepsilon_0 \) are constants.

Using Maxwells' idea of Electric field strength, \(|E| = - (\text{gradient of the scalar point function}) \), confirm by algebraic manipulations or deny with conviction (much more algebraic manipulation) that:

\[|i><i|E| = - \left(\frac{1}{4\pi} \right) \left(\frac{1}{\varepsilon_0} \right) \left[r^2 \vec{\mu} \cdot \vec{\mu} - 3x \left(\frac{\langle r \cdot \vec{\mu} \rangle}{r^5} \right) \right] \]