Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits.

Section 1—Basic Circuits

Inverting Amplifier

\[V_{OUT} = -\frac{R_2}{R_1} V_{IN} \]

\[R_{IN} = R_1 \]

Non-Inverting Amplifier

\[V_{OUT} = \frac{R_1 + R_2}{R_1} V_{IN} \]

Difference Amplifier

\[V_{OUT} = \frac{R_1 + R_2}{R_3 + R_4} \left(\frac{R_4}{R_1} V_2 - \frac{R_2}{R_1} V_1 \right) \]

For R1 = R3 and R2 = R4

\[V_{OUT} = \frac{R_2}{R_1} (V_2 - V_1) \]

\[R_1//R_2 = R_3//R_4 \]

Inverting Summing Amplifier

\[V_{OUT} = -\left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \]

\[R_5 = R_1//R_2//R_3//R_4 \]

For minimum offset error due to input bias current
Section 1—Basic Circuits (Continued)

Non-Inverting Summing Amplifier

Inverting Amplifier with High Input Impedance

*\(R_S = 1k \) for 1% accuracy

Source Impedance less than 100k gives less than 1% gain error.

Fast Inverting Amplifier with High Input Impedance

Non-Inverting AC Amplifier

\[V_{OUT} = \frac{R_1 + R_2}{R_1} \cdot V_{IN} \]

\[R_{IN} = R_3 \]

\[R_3 = \frac{R_1}{R_2} \]
Section 1—Basic Circuits (Continued)

Practical Differentiator

\[f_c = \frac{1}{2\pi R_2 C_1} \]
\[f_h = \frac{1}{2\pi R_1 C_1} = \frac{1}{2\pi R_2 C_2} \]
\[f_c < f_h < f_{\text{unity gain}} \]

Integrator

\[V_{\text{OUT}} = -\frac{1}{R_1 C_1} \int_{t_0}^{t_1} V_{\text{IN}} \, dt \]
\[f_c = \frac{1}{2\pi R_1 C_1} \]
\[R_1 = R_2 \]

For minimum offset error due to input bias current

Fast Integrator

Current to Voltage Converter

\[V_{\text{OUT}} = \ln R_1 \]

For minimum error due to bias current \(R_2 = R_1 \)
Section 1—Basic Circuits

Circuit for Operating the LM101 without a Negative Supply

Neutralizing Input Capacitance to Optimize Response Time

Integrator with Bias Current Compensation

Circuit for Generating the Second Positive Voltage

Voltage Comparator for Driving DTL or TTL Integrated Circuits

Threshold Detector for Photodiodes

*Adjust for zero integrator drift.
Current drift typically 0.1 nA/°C over −55°C to 125°C temperature range.
Section 1—Basic Circuits

Double-Ended Limit Detector

\[V_{OUT} = 4.6V \text{ for } V_{LT} \leq V_{IN} \leq V_{UT} \]
\[V_{OUT} = 0V \text{ for } V_{IN} < V_{LT} \text{ or } V_{IN} > V_{UT} \]

Multiple Aperture Window Discriminator

\[V_{IN} > V_{4} \]
\[V_{3} < V_{IN} < V_{4} \]
\[V_{2} < V_{IN} < V_{3} \]
\[V_{1} > V_{I} \]
Section 1—Basic Circuits (Continued)

Offset Voltage Adjustment for Inverting Amplifiers Using Any Type of Feedback Element

\[
\text{RANGE} = \pm V \left(\frac{R_2}{R_1} \right)
\]

Offset Voltage Adjustment for Non-Inverting Amplifiers Using Any Type of Feedback Element

\[
\text{RANGE} = \pm V \left(\frac{R_2}{R_1} \right)
\]

\[
\text{GAIN} = 1 + \frac{R_5}{R_4 + R_2}
\]

Offset Voltage Adjustment for Voltage Followers

\[
\text{RANGE} = \pm V \left(\frac{R_3}{R_1} \right)
\]

Offset Voltage Adjustment for Differential Amplifiers

\[
\text{RANGE} = \pm V \left(\frac{R_5}{R_4} \left(\frac{R_1}{R_1 + R_3} \right) \right)
\]

\[
\text{GAIN} = \frac{R_2}{R_1}
\]
Section 1—Basic Circuits (Continued)

Offset Voltage Adjustment for Inverting Amplifiers Using 10 kΩ Source Resistance or Less

\[R_1 = 2000 \frac{R_3}{R_4} \]
\[R_4/R_3 \leq 10 \text{k}\Omega \]
\[\text{RANGE} = \pm V \left(\frac{R_3/R_4}{R_1} \right) \]

Section 2 — Signal Generation

Low Frequency Sine Wave Generator with Quadrature Output

\[f_0 = 1 \text{ Hz} \]

\[R_2 = 22 \text{M} \Omega \]
\[D_1 = 6.3 \text{V} \]
\[D_2 = 5.3 \text{V} \]

\[C_2 = 0.02 \mu\text{F} \]
\[C_3 = 0.01 \mu\text{F} \]
\[C_4 = 30 \text{pF} \]
\[C_5 = 30 \text{pF} \]
Section 2 — Signal Generation (Continued)

High Frequency Sine Wave Generator with Quadrature Output

Free-Running Multivibrator

Wein Bridge Sine Wave Oscillator

*Chosen for oscillation at 100 Hz

Eldema 1869 10V, 14 mA Bulb
Section 2 — Signal Generation (Continued)

Function Generator

```
   V  
  +   LM101A  +  FREQ  +  LM107  +  Triangle Wave  +
  |  
  |  R3  140K  |  R4  1.4K  |  R5  8.2K  |
  |  
  +   R1  10K  |  R2  1M    |

Square Wave Output

C1  0.1 \(\mu\)F
```

Pulse Width Modulator

```
   V IN  v  
  +  +  LM101A  +  V OUT  +
  |  |  C1  0.47 \(\mu\)F  |  | |
  |  |  R1  100K  |  R2  100K  |  |
  |  |  R3  100\(\Omega\)  |  R4  100K  |  |

D1  6.2V  D2  6.2V
```
Section 2 — Signal Generation

Bilateral Current Source

\[I_{OUT} = \frac{R3 \cdot V\text{IN}}{R1 \cdot R5} \]

- \(R3 = R4 + R5 \)
- \(R1 = R2 \)

Bilateral Current Source

\[I_{OUT} = \frac{R3 \cdot V\text{IN}}{R1 \cdot R5} \]

- \(R3 = R4 + R5 \)
- \(R1 = R2 \)
Wein Bridge Oscillator with FET Amplitude Stabilization

\[
R_1 = R_2 \\
C_1 = C_2 \\
f = \frac{1}{2\pi R_1 C_1}
\]
Section 2 — Signal Generation (Continued)

Low Power Supply forIntegrated Circuit Testing

\[V_{OUT} = 1V/\Omega \]

Positive Voltage Reference

[Diagram of positive voltage reference circuit]

Positive Voltage Reference

[Diagram of positive voltage reference circuit]
Section 2 — Signal Generation (Continued)

Negative Voltage Reference

![Negative Voltage Reference Circuit Diagram](image)

Precision Current Sink

![Precision Current Sink Circuit Diagram](image)

Precision Current Source

![Precision Current Source Circuit Diagram](image)

\[I_0 = \frac{V_{IN}}{R_1} \]
\[V_{IN} \geq 0V \]
Section 3 — Signal Processing

Differential-Input Instrumentation Amplifier

![Circuit Diagram]

Gain adjust

\[A_v = 10^{-6} R_6 \]
Matching determines common mode rejection.

R1 = R5 = 10R2
R2 = R3
R3 = R4
R1 = R6 = 10R3

\[AV = \frac{R7}{R6} \]
Section 3 — Signal Processing (Continued)

Instrumentation Amplifier with ±10 Volt Common Mode Range

R1 = R4
R2 = R5
R6 = R7
† Matching Determines CMRR

\[\text{Av} = \frac{R6}{R2} \left(1 + \frac{2R1}{R3} \right) \]

High Input Impedance Instrumentation Amplifier

R1 = R4; R2 = R3

\[\text{Av} = 1 + \frac{R1}{R2} \]

†† Matching Determines CMRR
†‡ May be deleted to maximize bandwidth
Section 3 — Signal Processing (Continued)

Bridge Amplifier with Low Noise Compensation

*Reduces feed through of power supply noise by 20 dB and makes supply bypassing unnecessary.
†Trim for best common mode rejection
‡Gain adjust

Bridge Amplifier

Precision Diode

Precision Clamp

Fast Half Wave Rectifier

*E_{REF} must have a source impedance of less than 200Ω if D2 is used.
Section 3 — Signal Processing (Continued)

Precision AC to DC Converter

![Precision AC to DC Converter Diagram]

*Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Low Drift Peak Detector

![Low Drift Peak Detector Diagram]
Section 3 — Signal Processing (Continued)

Absolute Value Amplifier with Polarity Detector

\[V_{OUT} = -|V_{IN}| \times \frac{R_2}{R_1} \]

\[R_2 = R_4 + R_3 \]

\[R_1 = R_3 \]

Sample and Hold

*Polycarbonate-dielectric capacitor
Section 3 — Signal Processing (Continued)

Sample and Hold

![Sample and Hold Circuit Diagram]

*Worst case drift less than 2.5 mV/sec
†Teflon, Polyethylene or Polycarbonate Dielectric Capacitor

Low Drift Integrator

![Low Drift Integrator Circuit Diagram]

*Q1 and Q3 should not have internal gate-protection diodes.
Worst case drift less than 500 µV/sec over −55°C to +125°C.
In addition to increasing speed, the LM101A raises high and low frequency gain, increases output drive capability and eliminates thermal feedback.

† Power Bandwidth: 250 kHz
Small Signal Bandwidth: 3.5 MHz
Slew Rate: 10V/µs

\[
\tau C5 = 6 \times 10^{-8} \frac{\text{Rf}}{\text{Ri}}
\]

Fast Integrator with Low Input Current
Section 3 — Signal Processing (Continued)

Adjustable Q Notch Filter

\[f_0 = \frac{1}{2\pi R_1 C_1} \]
\[= 60 \text{ Hz} \]
\[R_1 = R_2 = R_3 \]
\[C_1 = C_2 = C_3 \]
Section 3 — Signal Processing (Continued)

Easily Tuned Notch Filter

![Circuit Diagram](image1)

\[f_o = \frac{1}{2\pi R_4 C_1 C_2} \]

R4 = R5
R1 = R3
R4 = \frac{1}{2} R1

Tuned Circuit

![Circuit Diagram](image2)

\[f_o = \frac{1}{2\pi R_1 R_2 C_1 C_2} \]

Two-Stage Tuned Circuit

![Circuit Diagram](image3)

\[f_o = \frac{1}{2\pi R_1 R_2 C_1 C_2} \]
Section 3 — Signal Processing (Continued)

Negative Capacitance Multiplier

\[C = \frac{R_2}{R_3} C_1 \]

\[I_L = \frac{V_{os} + R_2 I_{os}}{R_3} \]

\[R_S = \frac{R_3(R_1 + R_{in})}{R_{in} A_{vo}} \]

Variable Capacitance Multiplier

\[C = \left(1 + \frac{R_b}{R_a} \right) C_1 \]
Simulated Inductor Capacitance Multiplier

\[L \geq R_1 R_2 C_1 \]

[Equation]

\[R_S = R_2 \]

[Resistance]

\[R_P = R_1 \]

[Resistance]

High Pass Active Filter

\[C = \frac{R_1 C_1}{R_2} \]

[Capacitance]

\[I_L = \frac{V_{os} + I_{os} R_1}{R_3} \]

[Isoelectric Current]

\[R_S = R_3 \]

[Resistance]

Low Pass Active Filter

*Values are for 100 Hz cutoff. Use metalized polycarbonate capacitors for good temperature stability.

*Values are for 10 kHz cutoff. Use silvered mica capacitors for good temperature stability.
Section 3 — Signal Processing (Continued)

Nonlinear Operational Amplifier with Temperature Compensated Breakpoints

Current Monitor

\[V_{\text{OUT}} = \frac{R_1 \cdot R_3}{R_2} \cdot I_L \]
Section 3 — Signal Processing (Continued)

Analog Multiplier

\[R_5 = R_1 \left(\frac{V^-}{10} \right) \]
\[V_1 \geq 0 \]
\[V_{OUT} = \frac{V_1 V_2}{10} \]

Long Interval Timer

Fast Zero Crossing Detector

*Low leakage ~0.017 \(\mu F \) per second delay

Propagation delay approximately 200 ns

\^DTL or TTL fanout of three.

Minimize stray capacitance

Pin 8
Amplifier for Piezoelectric Transducer

Low frequency cutoff = R1 C1

Photodiode Amplifier

V_{OUT} = R1 I_D

Photodiode Amplifier

V_{OUT} = 10 \text{ V/\mu A}

High Input Impedance AC Follower

*Operating photodiode with less than 3 mV across it eliminates leakage currents.
Section 3 — Signal Processing

Temperature Compensated Logarithmic Converter

10 nA < I_{IN} < 1 mA
Sensitivity is 1V per decade
†1 kΩ (±1%) at 25°C, +3500 ppm/°C.
Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.
*Determines current for zero crossing on output: 10 µA as shown.

Root Extractor

*2N3728 matched pairs
Section 3 — Signal Processing (Continued)

Multiplier/Divider

$$E_{\text{OUT}} = \frac{E_1}{E_2}$$
for
$$E_1 \geq 0 \text{ and } E_2 \geq 0$$

Cube Generator
Section 3 — Signal Processing (Continued)

Fast Log Generator

\[E_{\text{REF}} \]

\[15V \]

\[R_3 \]

\[150K \]

\[1\% \]

\[2 \]

\[3 \]

\[R_5 \]

\[150K \]

\[1\% \]

\[C_1 \]

\[300 \text{ pF} \]

\[C_2 \]

\[75 \text{ pF} \]

\[C_3 \]

\[1 \text{ pF} \]

\[A_3 \]

\[\text{LM102} \]

\[8 \]

\[6 \]

\[R_6 \]

\[1K \]

\[R_7 \]

\[1K \]

\[\text{OFFSET ADJUST} \]

\[V^* \]

\[6 \]

\[2 \]

\[\text{2N2920} \]

\[1 \]

\[3 \]

\[A_2 \]

\[\text{LM101A} \]

\[8 \]

\[6 \]

\[R_4 \]

\[2K \]

\[C_4 \]

\[15 \text{ pF} \]

\[C_5 \]

\[150 \text{ pF} \]

\[\] 1 kΩ (±1%) at 25°C, +3500 ppm/°C.

Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.

Anti-Log Generator

\[E_{\text{REF}} \]

\[15V \]

\[R_3 \]

\[150K \]

\[1\% \]

\[2 \]

\[3 \]

\[R_5 \]

\[150K \]

\[1\% \]

\[C_1 \]

\[150 \text{ pF} \]

\[C_2 \]

\[20 \text{ pF} \]

\[R_4 \]

\[2K \]

\[A_1 \]

\[\text{LM101A} \]

\[6 \]

\[2 \]

\[\text{2N2920} \]

\[1 \]

\[3 \]

\[A_2 \]

\[\text{LM101A} \]

\[6 \]

\[2 \]

\[C_4 \]

\[5 \text{ pF} \]

\[C_3 \]

\[150 \text{ pF} \]

\[\] 1 kΩ (±1%) at 25°C, +3500 ppm/°C.

Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such automotive applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page: e2e.ti.com